Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shan Gao,* Ji-Wei Liu, Li-Hua Huo, Hui Zhao and Jing-Gui Zhao

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.032$
$w R$ factor $=0.072$
Data-to-parameter ratio $=14.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[tetraaquacobalt(II)]- μ-benzene-1,4-dioxyacetato- $\left.\kappa^{2} O: O^{\prime}\right]$

The $\mathrm{Co}^{\text {II }}$ atom in the title coordination polymer, $[\mathrm{Co}(1,4-$ BDOA) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}$ (where $1,4-\mathrm{BDOA}^{2-}$ is benzene-1,4-dioxyacetate, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}$), lies on an inversion center. The $\mathrm{Co}^{\mathrm{II}}$ atom has an octahedral coordination configuration, involving two carboxyl O atoms of different benzene-1,4-dioxyacetate ligands and four water molecules. Adjacent $\mathrm{Co}^{\mathrm{II}}$ atoms are bridged by anions with two monodentate carboxylate groups, forming a one-dimensional chain along the c axis; the $\mathrm{Co} \cdot$. Co separation within the polymer is 14.699 (2) A. A supramolecular network structure is formed by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Many promising supramolecular architectures sustained by coordination covalent bonds and hydrogen bonds have been designed and constructed in recent years. The selection of appropriate ligands is crucial to determining the structure of the coordination framework and its properties. Fortunately, multicarboxylate ligands are good candidates because of their versatile binding modes, and numerous polymeric complexes have been reported (Lee et al., 2003; Gomez-Lor et al., 2002; Bian et al., 2003). However, the structural characterization of polymers with the multidentate benzene-1,4-dioxyacetic acid ligand is less well developed. Recently, we have reported the structures of the mononuclear cobalt complexes $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right](1,4-\mathrm{BDOA})$ (Liu et al., 2004) and $[\mathrm{Co}(1,4-$ BDOA) $\left.\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, (II) (Gao et al., 2004); the $1,4-\mathrm{BDOA}^{2-}\left(1,4-\mathrm{BDOA}^{2-}\right.$ is benzene-1,4-dioxyacetate) ligand functions as a counter-ion in the former, and only one of the two oxyacetate groups is coordinated to $\mathrm{Co}^{\mathrm{II}}$ ion in the latter. We present here the crystal structure of a one-dimensional chain $\mathrm{Co}^{\mathrm{II}}$ polymer, $\left[\mathrm{Co}(1,4-\mathrm{BDOA})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}$, (I).

(I)

In (I), the $\mathrm{Co}^{\mathrm{II}}$ atom exists in an octahedral coordination environment (Fig. 1), defined by two carboxyl O atoms of different $1,4-\mathrm{BDOA}^{2-}$ ligands $[\mathrm{Co}-\mathrm{O}=2.090$ (1) \AA] and four water molecules $\left[\mathrm{Co}-\mathrm{O}_{\text {mean }}=2.095(2) \AA\right.$]. The $\mathrm{Co}^{\mathrm{II}}$ atom and the $1,4-\mathrm{BDOA}^{2-}$ ligand lie on inversion centers.

Received 2 August 2004 Accepted 5 August 2004 Online 13 August 2004

Figure 1
A view of the title complex, with 30% probability displacement ellipsoids. Symmetry code (i) as in Table 1.

Figure 2
A packing diagram of the title complex. Hydrogen bonds are shown as dashed lines.

The $\mathrm{C} 1-\mathrm{O} 1$ bond distance $[1.263$ (2) \AA; Table 1] is slightly longer than $\mathrm{C} 1-\mathrm{O} 2 \quad[1.252(2) \AA]$, appropriate for the monodentate coordination mode of carboxyl groups. The oxyacetate group and benzene ring are almost coplanar, with a $\mathrm{C} 3-\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1$ torsion angle of $176.9(2)^{\circ}$, whereas the torsion angles of the two oxyacetate groups and the benzene ring in (II) are 80.7 (3) and -90.2 (3) ${ }^{\circ}$.

In (II), the Co atom has the same coordination geometry as in (I). However, only one of the two oxyacetate groups in the monodentate mode is coordinated to the $\mathrm{Co}^{\mathrm{II}}$ center, and the other oxyacetate group is not involved in coordination. The $\mathrm{Co}-\mathrm{O}_{\text {carboxylate }}$ bond distance [2.106 (2) \AA] is slightly longer than the corresponding bond distance in (I).

In (I), each $1,4-\mathrm{BDOA}^{2-}$ group acts in a bis-monodentate mode to bridge two $\mathrm{Co}^{\mathrm{II}}$ atoms, forming a one-dimensional chain along the c axis. In the chain, the Co \cdots Co distance is 14.699 (2) \AA. Furthermore, chains are connected through intermolecular hydrogen bonds involving the water molecules and O atoms of $1,4-\mathrm{BDOA}^{2-}$ groups, with $\mathrm{O} \cdots \mathrm{O}$ distances ranging from 2.692 (2) to 2.979 (2) \AA and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles ranging from $135(2)$ to $158(2)^{\circ}$ (Table 2), yielding a hydrogen-bonding supramolecular network (Fig. 2).

Experimental

Benzene-1,4-dioxyacetic acid was prepared according to the method described for the synthesis of benzene-1,2-dioxyacetic acid by Mirci (1990). The title complex was synthesized by the addition of cobalt diacetate trihydrate ($4.76 \mathrm{~g}, 20 \mathrm{mmol}$) and 3-hydroxypyridine (0.95 g , $10 \mathrm{mmol})$ to a hot aqueous solution of $1,4-\mathrm{BDOAH}_{2}(4.52 \mathrm{~g}$, $20 \mathrm{mmol})$. The solution was allowed to evaporate at room temperature, and pink prismatic crystals were obtained after about six days. Analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{CoO}_{10}$: C $33.82, \mathrm{H} 4.54 \%$; found: C 33.91, H 4.46\%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$	$Z=1$
$M_{r}=355.16$	$D_{x}=1.773 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=4.9218$ (10) \AA	Cell parameters from 2096
$b=5.7966$ (12) \AA	reflections
$c=11.804$ (2) A	$\theta=3.5-27.5^{\circ}$
$\alpha=92.41$ (3) ${ }^{\circ}$	$\mu=1.34 \mathrm{~mm}^{-1}$
$\beta=94.98$ (3) ${ }^{\circ}$	$T=293$ (2) K
$\gamma=96.91$ (3) ${ }^{\circ}$	Prism, pink
$V=332.59$ (12) \AA^{3}	$0.37 \times 0.26 \times 0.18 \mathrm{~mm}$
Data collection	
Rigaku R-AXIS RAPID diffractometer	1526 independent reflections 1351 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.024$
Absorption correction: multi-scan	$\theta_{\text {max }}=27.5^{\circ}$
(ABSCOR; Higashi, 1995)	$h=-6 \rightarrow 6$
$T_{\text {min }}=0.637, T_{\text {max }}=0.794$	$k=-7 \rightarrow 7$
3183 measured reflections	$l=-15 \rightarrow 15$
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0406 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$	+ $0.0781 P$]
$w R\left(F^{2}\right)=0.072$	where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$S=1.05$	$(\Delta / \sigma)_{\text {max }}<0.001$
1526 reflections	$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{-3}$
109 parameters	$\Delta \rho_{\text {min }}=-0.28$ e \AA^{-3}

$$
\begin{aligned}
& 1526 \text { independent reflections } \\
& 1351 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.024 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-6 \rightarrow 6 \\
& k=-7 \rightarrow 7 \\
& l=-15 \rightarrow 15 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0406 P)^{2}\right. \\
& \quad+0.0781 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.37 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e} \AA^{-3}
\end{aligned}
$$

H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

Co1-O1	2.090 (1)	$\mathrm{O} 1-\mathrm{C} 1$	1.263 (2)
Co1-O1W	2.118 (2)	$\mathrm{O} 2-\mathrm{C} 1$	1.252 (2)
Co1-O2W	2.072 (2)		
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 1^{\text {i }}$	180	$\mathrm{O} 2 W-\mathrm{Co} 1-\mathrm{O} 1$	88.56 (6)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 1 W^{\text {i }}$	91.79 (6)	$\mathrm{O} 2 W-\mathrm{Co} 1-\mathrm{O} 1 W$	90.47 (6)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 1 W$	88.21 (6)	$\mathrm{O} 2 W-\mathrm{Co} 1-\mathrm{O} 1 W^{\text {i }}$	89.53 (6)
$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{O} 1 W^{\text {i }}$	180	$\mathrm{O} 2 W-\mathrm{Co} 1-\mathrm{O} 2 W^{\text {i }}$	180
$\mathrm{O} 2 W-\mathrm{Co} 1-\mathrm{O} 1^{\mathrm{i}}$	91.44 (6)		

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 2^{\text {ii }}$	0.85 (2)	1.93 (1)	2.733 (2)	158 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O} 1^{\text {iii }}$	0.84 (2)	2.22 (2)	2.876 (2)	135 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O} 3^{\text {iii }}$	0.84 (2)	2.21 (2)	2.979 (2)	153 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W 2 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.85 (2)	1.89 (1)	2.692 (2)	158 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W 1 \cdots \mathrm{O} 1 W^{\text {iii }}$	0.85 (2)	2.12 (1)	2.869 (2)	148 (2)

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $-x,-y, 1-z$; (iii) $1-x, 1-y, 1-z$.

C-bound H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ 0.93 and $0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and were refined in the riding-model approximation. The H atoms of water molecules were located in a difference map and refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distance restraints of $0.85(1)$ and $1.39(1) \AA$, respectively, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97

metal-organic papers

(Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20101003), Heilongjiang Province Natural Science Foundation (No. B0007), the Educational Committee Foundation of Heilongjiang Province and Heilongjiang University for supporting this work.

References

Bian, H. D., Xu, J. Y., Gu, W., Yan, S. P., Liao, D. Z., Jiang, Z. H. \& C. P. (2003). Inorg. Chem. Commun. 6, 573-576.

Gao, S., Liu, J. W., Huo, L. H. \& Zhao, H. (2004). Acta Cryst. E60, m1202m1204.
Gomez-Lor, B., Gutiérrez-Puebla, E., Iglesias, M., Monge, M. A., Ruiz-Valero, C. \& Snejko, N. (2002). Inorg. Chem. 41, 2429-2431.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA.
Lee, S. W., Kim, H. J., Lee, Y. K., Park, K., Son, J. H. \& Kwon, Y. U. (2003). Inorg. Chim. Acta, 353, 151-154.
Liu, J.-W., Huo, L.-H., Gao, S. \& Ng, S. W. (2004). Acta Cryst. E60, m439-m440. Mirci, L. E. (1990). Rom. Patent No. 0743205.
Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

